B. TECH

(SEM I) THEORY EXAMINATION 2019-20 ENGINEERING MATHEMATICS-I

Time: 3 Hours
Total Marks: 70
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.
$2 \times 7=14$

a.	For what value of ' λ ', the vectors $(1,-2, \lambda),(2,-1,5)$ and $(3,-5,7 \lambda)$ are linearly dependent.
b.	If A is a skew-Hermitian matrix, then show that iA is Hermitian.
c.	Find the maximum value of the function $f(x, y, z)=\left(z-2 x^{2}-2 y^{2}\right)$ where $3 x y-z+7=0$.
d.	Evaluate $\int_{0}^{1} \int_{0}^{x^{2}} e^{y / x} d y d x$
e.	Show that the vector field $\vec{V}=(\sin y+z) \hat{i}+(x \cos y-z) \hat{j}+(x-y) \hat{k}$ is irrotational.
f.	Find the area bounded by the parabola $y^{2}=4 a x$ and its latus rectum. g. For the scalar field $u=\frac{x^{2}}{2}+\frac{y^{2}}{3}$, find the magnitude of gradient at the point $(1,3)$

SECTION B

2. Attempt any three of the following:

a.	(i)Express $A^{6}-4 A^{5}+8 A^{4}-12 A^{3}+14 A^{2}$ as a linear polynomial in A where $A=\left[\begin{array}{cc} 1 & 2 \tag{3}\\ -1 & 3 \end{array}\right]$ (ii) Reduce the $\text { matin } A=\left[\begin{array}{lll} 3 & 1 & 4 \tag{4}\\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{array}\right] \text {.t }$
b.	(i)Trace tha curve $r=2 a \cos \theta$ (ii)If $\quad u=\operatorname{cosec}^{-1}\left(\frac{x^{1 / 2}+y^{1 / 2}}{x^{1 / 3}+y^{1 / 3}}\right)^{1 / 2}$ prove that $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=\frac{\tan u}{144}\left(13+\tan ^{2} u\right) .$ (4)
c.	(i) Divide 24 into three parts such that the continued product of the first, square of the second and the cube of the third may be maximum. (3) (ii)If $u=x^{3}+x^{2} y+x^{2} z-z^{2}(x+y+z), v=x+z, w=x^{2}-z^{2}+x y-z y$ Prove that u, v and w are connected by a functional relation
d.	(i) Change the order of integration for $\mathrm{I}=\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y$ and hence evaluate the same. (3) (ii) A triangular prism is formed by planes whose equations are $a y=b x, y=0$ and $x=a$. Find the volume of the prism between the planes $z=0$ and surface $z=c+x y$.

D ownload all N O T E S and PAPE R S at StudentSuvidha.com

| e. (i) \quad If $\vec{F}=3 x y \hat{i}-y^{2} \hat{j}$, evaluate $\int_{C} \vec{F} . d r$, where C is the arc of the parabola |
| :--- | :--- | :--- | $y=2 x^{2}$ from $(0,0) \operatorname{to}(1,2)$.

(ii) Find the directional derivative of $\frac{1}{r}$ in the direction of \vec{r} where $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$.

SECTION C

3. Attempt any one part of the following:

(a)	If $y=e^{m \sin ^{-1} x}$,prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+m^{2}\right) y_{n}=0$ and calculate $y_{n}(0)$.
(b)	If $x=e^{r} \cos \theta y=e^{r} \sin \Theta$ show that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=e^{-2 r}\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{\partial^{2} u}{\partial \theta^{2}}\right)$.

4. Attempt any one part of the following:
$7 \times 1=7$
(a) If $f(x, y)=x^{2} y^{1 / 10}$, compute the value of f when $x=1.99$ and $\mathrm{y}=3.01$.
(b) A rectangular box, open at the top, is to have a given capacity. Find the dimensions of the box requiring least material for its construction.
5. Attempt any one part of the following:
$7 \times 1=7$

(a)	Find the Eigen values and Eigen vectors of the matrix $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$
(b)	Find non-singular matrices P and Q such that PAQ is in normal form of the matrix and
hence find the rank of hatrix $\mathrm{A}=\left[\begin{array}{ccc}1 & -1 & -1 \\ 1 & 1 & 1 \\ 3 & 1 & 1\end{array}\right]$.	

6.

Attempt any one part 4 the following:
$7 \times 1=7$

(a)	Find the octant.
(b)	Transform the double integral $\int_{0}^{a} \int_{\sqrt{a x-x^{2}}}^{\sqrt{a^{2}-x^{2}}} \frac{d y d x}{\sqrt{a^{2}-x^{2}-y^{2}}}$ into polar coordinates and then evaluate it.

7. Attempt any one part of the following:
$7 \times 1=7$

(a)	$\begin{array}{l}\text { Verify Gauss divergence theorem for } \vec{F}=x^{2} \widehat{i}+y^{2} \widehat{j}+z^{2} \widehat{k} \text { over the parallelepiped } \\ \text { bounded by } x=0, x=a, y=0, y=b, z=0, z=c .\end{array}$
(b)	$\begin{array}{l}\text { Evaluate the integral } \int_{C}\{(x+y) d x+(2 x-z) d y+(y+z) d z\} \text { where } \mathrm{C} \text { is the boundary of } \\ \text { the triangle with vertices }(2,0,0),(0,3,0) \text { and }(0,0,6) \text { using stoke's theorem. }\end{array}$

D ownload all N O T E S and PAPE R S at StudentSuvidha.com

